

CLEAN **AIR** RESEARCH PROGRAM

BUILDING A SCIENTIFIC FOUNDATION FOR SOUND ENVIRONMENTAL DECISIONS

BOSC Review of ORD Clean Air Research Program (CARP)

Session 2: Air Quality Management

Ken Schere and Tim Watkins
EPA/ORD
Research Triangle Park, NC

May 29, 2009

Air Quality Research in the MYP

- Air quality research supports both Long-Term Goals (LTGs) of the CARP MYP
 - LTG 1: Reduce uncertainty in standard setting and air quality management decisions due to advances in air pollution science
 - NAAQS development and implementation
 - LTG 2: Reduce uncertainties in linking health and environmental effects to air pollution sources
 - "Source-to-health" linkage
 - Multi-pollutant research
 - Accountability

Research Drivers

- Science gaps associated with NAAQS implementation
 - Continuing O₃, PM_{2.5} non-attainment issues
 - Source characterization and identification
 - Air quality characterization
 - Control strategy development
 - Evolving (more stringent) standards
 - Multi-pollutant aspects
- Insights and recommendations from NRC Reports
 - Research Priorities for Airborne PM: IV (2004)
 - PM emissions inventory and air quality models for NAAQS
 - Enhancing air quality monitoring for research
 - From PM to a multi-pollutant approach
 - Accountability
 - Air Quality Management in the US (2004)
 - Improve emissions tracking
 - Enhance air pollution monitoring
 - Improve modeling

Session Themes

- Source Emissions
 - Estimation and evaluation
- Ambient Measurements
 - Air quality characterization and process insights
- Air Quality Modeling
 - Applications driving development and evaluation
- Extending Applications of Methods and Models
 - Linking to ecosystem, exposure, and climate assessments

Source Emissions Research

Goals

- Improve understanding of sources contributing to air quality (non-attainment) problems
- Improve emission inputs needed for air quality models, such as CMAQ model

Source Emissions Research Accomplishments

- Characterization of emissions from wildland and prescribed fires
 - Satellite imagery has greatly aided fire characterization
 - OC estimation from fires
- Advancements in biogenic emissions
 - Measurements of isoprene, sesquiterpenes, monoterpenes from variety of tree species
 - MEGAN, BEIS model evaluations
- Ammonia emissions
 - Key precursor for inorganic PM
 - Flux measurements have provided new insights into bi-directional nature of emissions/deposition
- Anthropogenic source sampling
 - Semi-volatile organic measurements show that POA is largely gas-phase at emission
 - Estimating PM emissions factors in near-source environments
- Integration of inverse, source-based, and receptor models
 - Characterize and improve emissions estimates for air quality model
 - Real-world (incl. satellite) measurements show more temporal/seasonal variability than national emissions inventories

Ambient Measurements Research

Goals

- Development, application and evaluation of sampling and analytical methods
- Provide insights into source contributions, atmospheric processes, ambient concentration variability

Organic Carbon Measurements

Methods Evaluation

Coarse Particle Composition

Ambient Measurements Research Accomplishments

- Methods to support NAAQS compliance
 - New FEMs for continuous PM_{2.5} and PM_{10-2.5} monitors
 - High resolution semi-continuous PM species measurements for source apportionment
 - Low resolution passive methods for spatial distributions and source apportionment
- Improved understanding of SOA formation
 - New field and laboratory measurements of SOA and precursors
 - Resulting in development of new SOA formation pathways from isoprene, sesquiterpenes, and benzene
- Coarse PM
 - Spatial variability within urban areas
 - Regional composition of coarse PM
- Mercury fate and transport
 - Measurement technologies for atmospheric Hg fluxes
 - Support for modeling studies and source apportionment

Air Quality Modeling Research

Goals

- Development, application, evaluation, and refinement of air quality modeling systems to improve their reliability and credibility for research and policy assessments
- Provide insights into model sensitivities to data and processes to guide related physical, chemical, meteorological research

Air Quality Modeling Research Accomplishments

- PM process improvements
 - Incorporation of new SOA formation pathways into CMAQ, including biogenic, aromatic, and in-cloud mixed-phase processes
 - Development of Volatility Basis Set approach to semi-volatile primary and secondary organics; life-cycle description of organic aerosol
 - Dynamic interaction between fine and coarse model aerosols
 - Source-tracking tools for primary organics
- Extension of chemical kinetic mechanisms
 - Inclusion of 43 HAPS, including Hg
 - Gas, aqueous, and heterogeneous (esp. N₂O₅) chemistry
- Air quality-meteorology interactions
 - Improved consistent boundary layer and land-surface treatments in air quality and meteorology models
 - Transition to WRF model for meteorology input
- Framework for model evaluation
 - Development and application of operational, diagnostic, dynamic, and probabilistic modes of evaluation

Extended Applications Research

Goals

 Link air quality methods, measurements, and models to assessments for ecosystem health, human exposures, and climate change impacts

Climate Change Impacts

Exposure Assessment

Integration of Regional and Local Scale Models

Ecosystem Impacts

Extended Applications Research Accomplishments

- Linking to ecosystem assessments
 - Development of Watershed Deposition Tool to bridge between air and watershed models
 - Identified sources and role of regional NOx, SOx, and NH3 in deposition to ecosystems
- Linking to climate change assessments
 - Climate Impacts on Regional Air Quality (CIRAQ) project pilot study on downscaling global climate and chemistry model projections to 2050 on U.S. air quality
 - Development and application of sector-based emission projection models (e.g., MARKAL)
- Linking to human exposure assessments
 - Developed "hybrid" model approach using CMAQ and AERMOD models to reach local fine-scale concentration estimates
 - Used hybrid model concentration results in exposure modeling (SHEDS, HAPEM) in New Haven, CT pilot study

Impacts and Outcomes

- Model applications informing:
 - Policy decisions
 - Clean Air Interstate Rule (CAIR)
 - Clean Air Mercury Rule (CAMR)
 - Renewable Fuels Standards (RFS-2)
 - Ecosystem Assessments
 - Chesapeake Bay and Tampa Bay
 - Global Change Assessment
 - Assessment of the Impact of Global Change on US Regional Air Quality (NCEA)
- Measurement studies informing:
 - Residual Non-attainment areas (St. Louis, Detroit)
 - Mercury Deposition (Steubenville)

Impacts and Outcomes (cont)

- Improvements in measurement and modeling tools
 - FEMs for continuous PM_{2.5} and PM_{10-2.5}
 - National Emissions Inventory
 - MOVES new mobile source emissions model
 - MEGAN (Model of Emissions of Gases and Aerosols from Nature)
 - CMAQv4.7; latest (2008) public release of model
 - PMF and Unmix receptor modeling tools

	Number of Designations by Pollutant Since 2005							
Designation	PM ₁₀	PM _{2.5}	PM _{10-2.5}	03	NO ₂	SO ₂	CO	Totals
Federal Reference Methods (FRMs)	1	3	3		3		3	13
Federal Equivalent Methods (FEMs)	2	10	2	4		3		21
Modifications to FRMs	9	3		2	5	8	8	35

Future Directions

Emissions

- Enhanced source characterization
 - Aircraft, off-road vehicles, on-road vehicles with alternative fuels
 - Continued application of novel measurement methods

Ambient Measurements

- Near Road
- Cleveland Multiple Air Pollutant Study (CMAPS)
- Coarse particles
- Methods
 - FRM/FEM requirements
 - Application and Evaluation in field work

Models

- 2011 CMAQ model releases
 - Enhancements for urban-scale modeling
 - Two-way interactive WRF-CMAQ meteorology/air quality model
- Enhanced receptor-based models

Extended applications

- Expanded program in climate-air quality modeling and assessment
- New ecosystem assessments (biofuels and landscape changes)
- Multi-pollutant modeling and human exposure applications
- Accountability demonstrating impact of emissions, air quality changes

Future Directions: Multi-pollutant Capabilities

Future Directions: Supporting All Aspects of Air Quality Management

Source: Air Quality Management in the United States (NRC 2004)

